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ABSTRACT

A unified approach to the design and evaluation of fast algorithms for discrete signal
processing is developed. Based on the theory of finite groups. it hence includes the
familiar cases of the fast Fourier and Walsh-Hadamard transforms. However, the use of
noncommutative groups reveals a large variety of novel methods. Some of these exhibit
a superior performance, as measured by both reduced error rates and computational
complexity, on nonstationary data.

The recent history of this subject is reviewed first, followed by a detailed examination
of the three principal ingredients of the present study: the underlying groups. the signal-
processing tasks on which the group-based algorithms are to compete. and the signal
models used to define the data environment. Test results and conclusions then follow,
the former being based on the use of random correlation matrices.
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1. INTRODUCTION

This preliminary section is intended to provide a necessary minimal background to motivate the
technical results to be presented below. Most of this motivation is set out in great detail in an earlier
Technical Report Ilj (especially Section III therein), and it is assumed that serious readers are familiar
with that material. However, the present section will update I ll by restating the essential role of finite
groups in discrete signal processing and by reviewing some pertinent work of other researchers which.
in most cases, was not available when IlI was being prepared.

In subsequent sections of this report. we will detail the results of an effort to implement and

evaluate the program set forth in Section III of I I]. namely the application of the harmonic analysis
associated with finite groups to certain standardized signal-processing tasks. The essential purpose is to
determine if this somewhat exotic theor\ can lead to practical signal-processing algorithms that improve
on conventional techniques that use the fast Fourier transform. This particular transform is, of course.

associated with a particular class of finite groups. namely the cyclic groups. We shall eventually
conclude that its use can only be recommended for data derived from a stationary signal source: more
general nonstationary data are better processed by transforms associated with other groups.

1.1 A GENERAL APPROACH TO SIGNAL PROCESSING

For several years, I have been evolving both a technical and a philosophical approach to signal
processing. Her, I emphasize a particular technical aspect. as a sequel to Section III of [11. For an
associated philosophical viewpoint, refer to Section I of that report where I expressed the view that one
of the primary motivations for working on the foundational aspects of signal processing is to provide
answers to the basic problem of justifying numerical operations on a data set: that is. why do we do one

thing and not another?

Many of the possible answers to such questions are prosaic. A particular algorithm may be em-
ployed because it is familiar, convenient (e.g., prepackaged), or fast. Whether or not it is the best thing
to do in a given context is often less clear. Indeed, there is always a trade-off among familiarity, speed
(e.g., complexity), and error. Even when an optimal procedure is known, its actual implementation may
be too computationally intensive for the desired application, and recourse to a faster but suboptimal
method must be made.

We can perceive a coarse partition of the broad spectrum of signal-processing activity, as depicted
in Figure 1. The spectrum ranges from highly theoretical studies (mathematical foundations, or MFSP),
to the design of corresponding reliable and efficient software, to the implementation of this code in
suitable hardware. to the final specific field usage of such devices, usually as part of a larger system.
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Figure 1. Range of signal-processing activity.



Mindful of the fundamental problem of justifying operations on data. work in MFSP is usually
aimed it creating optimal algorithms for some particular data and design structure. But. it may also
involve creating new algorithms (optimal or not) by use of some fairly exotic mathematics. As in
theoretical physics. this ever-increasing use of ever-deeper :., more diverse areas of mathematics is the
source of much of the power and the intellectual excitement of this work.

Several quite recent examples of the high level of international interest and activity in MFSP
include the following conferences and workshops: the Conference on Mathematics in Signal Processing
at University of Bath. September 1985: the SIAM Workshop on Mathematics of Systems and Signal
Processing at Stanford University. September 1987: and the summer Program on Signal Processing at
the Institute for Mathematics and Its Applications. Minneapolis. mid-1988. Proceedings of the Septem-
ber 1985 conference have been published [21.

Returning momentarily to the context of Figure 1. we nia say that the kind of application mo-
tivating the work about to be described is a signal-processing device, operating within the confines of
a larger system, which has to repeatedly and rapidly process data either to extract information (c.g..
estimate on an unobservable signal embedded in noise) or to eliminate redundancy. The ambient system
might then use the processor output for fire control or direction change in the first case. or for data
transmission or display in the second. In all such applications, the main question concerns the trade-
off between speed (efficiency. complexity, etc.) and error. The methods discussed below will illustrate
some possibilities for accepting small increases over optimum in system error rates. in return for in-
creases in computatioiil efficiency.

To facilitate comparisons between competing algorithms, we will henceforth adopt a strictly neutral
approach toward applications, in the sense that the discussion will remain free in implementation con-
siderations and specific technologies. Hence, the algorithms will only be compared numerically and
statistically on standardized signal-processing tasks, such as data compression and minimum mean-
square (Wiener) filtering.

One final comment concerning the coarse structure of MFSP: We see this structure as triangular,
with "vertices" consisting of Hilbert space theory, probability and statistics, and abstract harmonic
analysis on groups. We must immediately acknowledge that this perceived structure is certainly not all
inclusive, but is intended merely to give an approach to discerning some general principles and meth-
odology in a virtually infinite amount of technical detail.

The importance of Hilbert spaces is that these serve as domains of operators, which in turn model
various transformations of one signal into another. Operation theory has been intensively developed in
the last four decades, as has the more exotic theory of operator algebras. although the most fundamental
results (Spectral theorem: Bochner and Stone theorems for positive definite functions and unitary rep-
resentations of the real line. Peter-Weyl theory for decomposing unitary representatives of compact
groups: von Neumann double commutant theorem) date back to the late 1920s. However. most of the
operators with direct signal-processing application are of elementary structure (e.g.. projections. com-
pact. and unitary operators) and many of the practical difficulties are of a computational nature (e.g.,
computing singular value and spectral decompositions. adjoints and pseudoinverses. approximation by
simpler operators. etc.).



Since real data are always accompanied bN noise. "what is measured is not the truth.- and.
therefore. "careful signal processors must be statisticians" 1J. TukeyJ. so. probability and statistics constitute
our second fundamental "vertex." Combined with Hilbert space. this is the basic setup to model second-
order random variables and processes, (most of) the theories of Gaussian measures and abstract Wiener
spaces. mean-square prediction and filtering (conditional expectations), etc. Much of what is now called
linear inverse theory ,recovering an unobservable signal passed through some channel or measuring
device, and observed in noise) can also be constructed in this context, as can the theor\ of optimal
algorithms and information-based complexity'.

This statistical-linear approach to signal processing is b\ now quite standard, and not anything that
requires further commentary here. In I1 1 1 attempted to make the case for harmonic analysis over not
necessarily commutative groups as a third foundational "vertex" of signal processing. In general. groups
permit us to take advantage of physical or temporal symmetry in a situation, and to produce orthogonal
expansions in functions that respect this symmnetry. To this end, the vast theor\ of unitary representa-
tions is available. especially the Peter-Weyl theory for compact groups. A familiar example is that of
stationary stochastic processes over locally compact commutative groups. In a different direction. I
emphasized in [ I I the role of finite groups as offering a unified approach to fast unitar\ transforms, and
it is this theme that is developed below.

Finally, there are two points not made in IlI that should be inserted here. First. as mathematics
advances, we are starting to see an influx of novel nonorthogonal bases and expansion devices in
(separable) Hilbert space. We have in mind here. ilter alia. Riesz bases (actually a rather classical
notion, defined as a bounded unconditional basis. equivalently, an orthonormal basis transformed by an
automorphism) 131: Dirac bases (a kind of continuous orthogon.l basis in the context of "Sobolev
triples") 141: and, inevitably. Dirac-Riesz bases 141, generalized coherent states. and "wavelets." These
last two concepts are very much associated with (square-integrable) group representations. appearing as
discrete subsets of certain orbits defined by an element of associated Hilbert space known in each case
as the "'analyzing wavelet." This kind of analysis, developed primarily by French mathematicians and
physicists 15. 6. etc.1 is rather profound. especially when dealing with non-unimodular groups. and is
likely to be of real value in joint time-frequency approaches to signal processing. It extends the classical
work of Gabor (wavelets) and Wigner (distributions). It is not germane to give a more precise discussion
here. the point simply being yet another instance of group-theoretic methodology in signal processing.

Second. we should bear in mind that the early development of the general or abstract theory of
Hilbert space and operators thereon was greatly motivated by attempts to formulate a rigorous theory of
quantum mechanics. The chief architect of this fusion was, of course. John von Neumann 171. For
example. the most fundamental of operator structure theorems, the Spectral theorem. states that a not
necessarily bounded self-adjoint operator can be synthesized from a family of orthogonal projections.
more precisely, from a projection-valued measure (or resolution of the identity) on the real line:

T= dE (A)
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The quantum mechanical interpretation of this formula is that for each system state. ak described by a
unit vector x in the space of T. the probability measure

B E (-- ) ., (B )

describes the result of measuring the observable associated with T. The projections E(B) themselves
correspond to yes-no -questions- about the observable, so that it at least becomes plausible to expect
some sort of determination of such operators by a family of projections.

Now. the only point to be made here i; that because of this close connection between the mathe-
matical foundations of quantum mechanics and the basic theory of Hilbert space. and because of our
heavv use of this theory in our own work on MFSP (not so much an issue in the present report). we
should expect some interesting connections between quantum mechanics and signal processing. In fact.
such connections are being noticed in various ways by several researchers, and we intend to discuss sonic
of these in later reports. Hopefully, an eventual unified the'-,, of fundamental quantum mechanics.
pattern recognition. information theory, and signal processing will emerge (insofac as this is possible!).

1.2 THE ROLE OF FINITE ',ROUPS

Let us now move directly to the essence of our subject: the uses of finite groups for certain signal-
processing applications. As suggested in I11I. a distinction is to be made between the roles of finite and
infinite groups: representations of and analysis on the latter serve to define structure and analytic
models, such as expansions and transforms of idealized signals. while analysis on the latter leads to
direct computational algorithms.

As discussed in 11. finite nonsimple groups permit a unified approach to fast unitary transforms
and discrete suboptimal filters. Of course, there are other nongroup-theoretic approaches to fast trans-
forms. and references were provided in [II to such work (References 10. 15. and 47 of Section Ill
therein). Attempting a moderately reliable analogy, we may say that, at the next level of complexity.
the simple groups are to the family of all (finite) groups as the prime numbers are to the set of all positive
integers. In fact. each integer admits an essentially unique prime factorization. and each finite group
admits a composition series (that is, a decreasing chain of subgroups, each of which is a maximal normal
subgroup of its predecessor): the associated factor groups are then simple. The Jordan-Holder theorem
states that any two composition series for a particular group are equivalent, in the sense that the simple
groups associated with the two series can be paired off isomorphically. Thus, each finite group deter-
mines a unique list of simple groups. And the converse is, in a certain sense, also valid. That is, if we
knoA all simple groups (which is the case now 181). then all finite groups can. in principle, be obtained
by use of the Schreier extension technique. Hence, all possible groups having a given list of composition
factors can be constructed 191. although not very efficiently. In particular. when this theory is applied
to the class of cyclic groups. we can recover the prime factorization of integers.

Nowv. like the integers, the finite groups are elementary mathematical objects and exist indepen-
dently of any further tleories. or of any particular signal-processing application. It was shown in III
that the complexity of the group transform F(; associated with a particular group G. of order N. is related
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to the subgroup structure of G, especially to the length of a composition series for G: the greater this
length, the greater the possibility of reduction of F(; complexity. The best cas- has F(.0 complexity
reduced from O(N to OtN log, N). as .vih the familiar fast Fuirier or fast Walsh transforms on the
cyclic (resp., dyadic) groups of order N - 2".

The complexity issue for various group transforms aoid their inverses. the latter not necessarily
being group transforms, has been rather extensively examined in recent literature and will be reviewed
in more detail in Subsection 1.3. On the other hand. this is not the only issue of interest in regard i,)
signal-processing applications. There is the further problem of deciding which of the (often many)
groups of a given order is most appropriate to a particular signal-processing task. That is. there is te
fundamental trade-off between speed. in the sense of reduced complexity. and the rror incurred as the
result of using a particular group transform or "ter in place of ti,, optimum transforn-i or filter.

We must be prccivc hc.e. Since we are interested in evaluating and comparing the performance
of different groups in a signal-processing context. it is necessary to spcify four variable,,, namel\:

* Data dimension

* Group

* Task (with performance measure)

* Signal model.

In regard to the first two variables we naturally require that

data dimension = order (group)

The latter three vai lables are discussed in detail in Sections 2 through 4 below. When all four variables
have been fixed (as indicated in the later sections), then a definite qvstion can be asked, and thus group

performance in various situations can be contrasted.

In further regard to the relation between the first two variables, we have two alternatives. First,
we can fix a data dimension N and then consider some (possibly all) groups of order N. This becomes
difficult too rapidly as N increases, especially for the most important cases of highly composite N (such
as N = 16. 32. 48, 64, 96. ...) which are, as already noted, exactly the cases where the greatest reduction
in complexity is to be expected. Indeed, for the values of N just mentioned there are, respectively. 14.
5 1. 52. 267, 230, ... distinct group isomorphism types of that order. Hence, a second approach has
proved useful - to study the asymptotic performance of a sequence of groups of orders N , as k -- -,
Familiar examples of such sequences are the cyclic groups of order N, = k. the dihedral groups of order
N = 2k, and the dyadic groups of order N, = 2k. Relevant properties of these groups. and of a fourth
sequence. will be discussed in Section 2 below.

We shall look at three canonical signal-processing tasks (data compression. data decorrelation. and
Wiener tiltering) and their associated performance measures. with which we will chalenge the various
groups. Other tasks and measures could have been selected (a rate-distortion function, an entrop.
criterion, resolution ability. etc.), but we had to start, and stop. somewhere and the three task, that we
have elected to work with are familiar a id neutral, that is. free of application or hardware specifics.
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The choice and analysis of various performance measures and their interrelationships, especially
in connection with compression and decorrelation, are a little more subtle than might be expected at first
and, in fact, are currently under further investigation by the author. This will be discussed further in
Section 3 below. But. we can note here that all the performance criteria utilized in this report have the
virtue of being rather simple functions of the data covariance matrix. (Actually. our signal models will
be restricted so that all components of each signal used as a test case for any of our algorithms will have
the same variance: hence, we may assume that all covariance matrices are of correlation type. that is.
have their diagonal entries equal to unity.) From this it follows that a choice of signal model may be
reduced to a choice of a random correlation matrix. This happens to not be a particularly obvious thing
to do and. in fact, leads to a host of interesting problems which are described and. in some cases. solved
in two other reports 110. 111. A summary of the essential points of this work is given in Section 4 below.

Let us no" return once more to the general role of finite groups in discrete signal processing.
Suppose that we are given a random vector .v of dimension N. with E(x) = 0. For any particular group
G. of order N, we can think about the fundamental idea in two equivalent ways. First is the approach
described at length in I ], namely to view .x as a function in C9(G). and to expand x in the special ortho-
normal basis defined by the irreducible representations of G. The mapping F; which assigns to x its
Fourier coefficients with respect to this basis is exactly the group transform on L(G), and by Parseval s
theorem is a unitary operator there. It is sometimes more useful to group these coefficients together in
sets of size d-, ,here d = dimension of ith irreducible representation of G, so that F, can be considered
to map L7(G, onto L'(Gi. where (G) is the dual object of G consisting of all the irreducible represen-
tations of G.

Alternatively. we maintain the natural view of x as an element of the N-dimensional Hilbert space
N'-N. and think of G as a symmetry group of the set (1, 2 ... , NI, that is, as a subgroup of the symmetric
group on N letters (Cayley's theorem). In turn. G may be realized as a group of N X N permutation
matrices. If each point of 11. 2 ..., N) is considered to have measure I/N. then each N X N permutation
matrix can be considered to be a measure preserving transformation of the trivial measure space 11, 2,

.... AI. So. we have a unitary representation of G on the space 2(N). By the usual general theory. this
representation can be decomposed into a direct sum of its irreducible components. and so 12(N) corre-
spondingly splits into a direct sum of invariant subspaces. By selecting an orthonormal basis for each
of these subspaces. and expanding x in the resulting coordinates, we obtain a decomposition equivalent
to that of the first approach.

In the case of a nonabelian G. there is some unavoidable non-uniqueness in the choice of these
bases that goes beyond a mere rearrangement. This is due to the presence of at least one irreducible rep-
resentation of dimension _> 2. Hence. the group transform FG is only unique up to a unitary equivalence.

For a given data dimension N, the various group transforms (defined by the groups of order N)
formalize the initiative notion of the passage from physical to spectral coordinate domains. Each such
transform is to be thought of as a potential approximant of the discrete Karhunen-Lo~ve transform
(DKLT associated with a particular statistical signal class. We contemplate using such approximants
because they are fast to compute (depending on the group. and relative to a general N X N unitary
transform). and because we may not know the exact statistical nature of our data.

6



Similarly, group filters, defined abstractly as right convolution operators on (G). are to be
thought of as potential approximants to some specific operator on L2 (G. which has arisen in a signal-
processing context. The example that we emphasize in this report is the Wiener-filter operator which
is the optimal solution (in the sense of minimum mean-square error) to the problem of estimating a
random signal with known covariance structure that has been observed in additive white noise (uncor-
related with the signal). By passing to the spectral domain via the group transform, we can obtain a fast
algorithm for such operators, just as is done in the classical case of computing digital filters by means
of multiplying the corresponding transfer functions in the (fast) Fourier domain. Also discussed at length
in Il] was the problem of choosing the optimal filter, for a fixed G. to best approximate a particular
operator such as a Wiener filter. As usual, we are interested in the trade between the reduced complexity
of the optimum group filter (at least for certain groups. as discussed below) and the increase in error over
the theoretical optimum.

1.3 RECENT WORK OF OTHER AUTHORS

Before delving into the technical details of our own work. it seems useful to briefly survey some
other related approaches to the main problems. This is done primarily for balance and completeness.
and we will concentrate on work not already referenced in our preceding report Il 1.

Let us first consider the problem of approximating the DKLT of a random vector .X with E(x) =

0. This is the essential issue in data compression and decorrelation. since this transform has the desired
optimality properties of maximum variance-packing and complete decorrelation. among others relevant
to feature selection for pattern recognition 1121.

Since the spectrum of a Hermitian operator such as the covariance operator of -% is unique only up
to order and multiplicity, the DKLT of x is not uniquely specified. At the very least, namely when the
eigenvalues of the covariance operator are distinct (i.e.. have multiplicity one). any unitary matrix U that
diagonalizes a matrix representation of this operator can be replaced by UQ. where Q is a permutation
matrix. So, when we talk about approximating the DKLT we shall be referring to a unitary matrix U
with the property that U*AU is "approximately diagonal," where A is a covariance matrix of .%. Of
course, this phrase needs to be carefully defined and, in fact. is a somewhat subtle problem. as already
mentioned. We will touch on this in Section 3.

In general. we can discern at least three approaches to approximating the DKLT. which we will
term "'direct," "asymptotic." and "fixed suboptimal." Let us say a few words about each of these in turn.
The reader should keep in mind that there are always two conflicting aspects of this problem: the
accuracy of the approximation. and its complexity.

The direct approach deals with an explicitly known covariance matrix A. which is associated with
a vector of samples from a weakly stationary stochastic process. Hence. A is also a Toeplitz matrix. A
method developed by A. Solodovnikov (13. in Russian] leads to a fast algorithm for the exact DKLT
of such a matrix in the case where its dimension N has the form 2n . The basic idea is to factor the DKLT
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matrix as the product of n sparse matrices, so that each element of A can be expressed as a product of
just one element of each factor. The proof is carried out by induction on n. beginning with the trivial
case where n I:

[ _ ][a ;]][' 2LOP 0]
Notice that in this case the diagonalizing matrix is just the 2 X 2 Walsh-Hadamard (W-H) transform.
In the general induction step the 2" x 2" W-H transform is used. along with a permutation. to reduce
A to block diagonal form to which, in turn, the induction hypothesis can be applied.

A second direct approach has been suggested in the Russian literature by I. Kaporin 114). under
the alternate assumption that the covariance matrix A is tiidiagonal. This is of course a significant
restriction since. otherwise. to first put A in this form (say by Householder reduction) requires O(N )

operations. But when A has this special form. recursive linear computations can be defined to yield an
O(N log3 N) operations count in affecting the DKLT of a vector.

Next we turn to the asymptotic approach. Once again we consider samples (. V) drawn from

a weakly stationary stochastic process, but without a definite bound on N. The corresponding covariance
martrices will again be Toeplitz. Early treatments of this topic 115, 161 proceeded by making some
assumption about the rate of decrease of the autocorrelation function of the process. and then showing
that some particular sequence of unitary transforms of interest, such as the sequence of N-point DFTs.

would asymptotically decorrelate the N X N covariance matrices. Depending on the precise nature of
the assumptions. this last phase could mean either that some fixed correlation between two of the
transformed components of (x ..... xN) tends to 0. or that some composite measure of all these corre-
lations does so.

More recently, M. Unser [171 has shown that several popular fast unitary transforms (DCT. DFT,
DOFT ...) achieve asymptotically the effect of the DKLT, provided such effects are carefully described
by appropriate performance measures, namely as separable convex or concave functions of the variances
of the transformed samples. The analysis nicely makes use of a classical theorem on the asymptotic
distribution of the eigenvalues of Hermitian Toeplitz matrices, due to Grenander and Szego, as adapted
by Gray I 18. Thin. 2.31. To my knowledge. this result of Unser's determination is the most general result
presently known on asymptotic approximation of the DKLT for Toeplitz covariance matrices.

Lastly. we consider the fixed suboptimal approach. This is appropriate in all cases not yet covered,
that is. the problem size is fixed but the exact signal covariance is not known (or, if known, is not
Toeplitz). In this case. we can attempt to measure the performance of some fixed N-dimensional unitary

transform over a class of N X N covariance matrices. By doing this repeatedly. we could hope to rank
the transforms relative to the fixed performance measure and covariance class. Of course, they could
also be ranked relative to computational complexity. which can be defined independently of any signal-

processing task.

Along with M. Karpovsky and E. Trachtenberg 119. 201, 1 also have adopted this sort of approach.

All this activity involves the notion of transforms (and filters) defined by finite groups. the general theory
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of which was set down at length in [11. Actually. the most recent work of Trachtenberg 121. 221 utilizes
only abelian groups. In 1211. for example. such a group G of order N is given, and then a class of so-
called Frobenius group matrices is introduced. Such a matrix A is defined by specifying first a scalar
function f on G and then defining

aii = f(gi gi )

where G = {g.: i = 0. 1 ..., N - 1 : A turns out to be unitary exactly when fig) f(g-1 ) = I. for all
g E G. The associated matrix transforms can be computed by fast algorithms in many ways. depending
on how G is factored into a product of (cyclic) subgroups, and on the support off. Any remaining
degrees of freedom in the choice of f can be utilized to relate the performance of the A-transform to a
given signal-processing task. such as DKLT approximation. In this fashion, a whole spectrum of trades
between complexity and error can be attained.

Our final comments in this section pertain to the issue of group transform complexity. This issue
was discussed at some length in II]. primarily for the case of abelian groups. For such groups a
satisfactory theory exists, due to the facts that all irreducible representations are one-dimensional
(characters) and that the dual object has a group structure (dual group). so that the inverse transform is
again a group transform. For nonabelian groups, the only result I knew of at the time I II was written
(due to Karpovsky 1231) quantified the complexity of the direct and inverse group transform as Ojord(G)
Y ord(Gi)], when the group G can be decomposed into a direct product of groups G,. This same result
was established independently by M. Atkinson 1241. More recently, this has been investigated by
T. Beth 1251 for the much more general case of solvable groups. For such a group G. there is a
composition series

{e}=G,.+l c G, c ... c G, =G

with each G, a normal subgroup in G.r of prime index p. Then. the computational complexity of each
transform can be bounded by ord G(Lp + O[ord(G)"2 ] steps, where u 5 3 is the exponent for which
N x N matrices can be multiplied in O(N") arithmetical steps.

Of course, not all groups of potential interest in statistics and engineering are solvable. Perhaps
the foremost example is the symmetric group S on n letters. For this group, a special analysis of

transform complexity has been made by Diaconis and Rockmore 1261, who show the possibility of
reducing the usual O[(n!) 2] count to n(n/) u/2
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2. THE GROUPS

Recalling the preliminary discussion in Section 1.2. we now indicate precisely the four classes of
finite groups used in the present work. These are the cyclic groups, the dyadic groups, the dihedral
groups, and, for lack of a more traditional terminology, the "Russian groups." There is a cyclic group
C I of all orders, while the other types exist only for restricted orders as indicated parenthetically in
Table 1.

TABLE 1

Groups Used in This Study

Commutative Noncommutative

Cyclic (n) Dihedral (2n)

Dyadic (2n) "Russian" (2n)

Three of these classes of groups have a geometric significance, while the Russian groups are more
abstract, being in general only defined in terms of generators and relations. Thus, the cyclic group C
can be identified with the group of counterclockwise rotations of the plane through an angle of 27rn
radians. The dyadic group D,, is the set of all n-dimensional binary (0.1) vectors, with componentwise
addition mod 2. Thus, equivalently, D = C, X ... X C,, n times, and we can think of D,, as constituted
of the vertices of the unit hypercube in R". The dihedral group Di is the group of symmetries of the
regular n-gon. It is generated by a rotation a and a reflection h so that a" = b2 = identity, and aba = b.
Thus. Di contains C as a normal subgroup and is of order 2n. It is the semidirect product of C and
C,, and is hence the simplest example of a noncommutative group.

Finally, the "Russian groups" form a sequence IBG,,I of groups of order 2" defined as follows.
If n is even, BG,, = BG., x C,. If n = 2k + 1, then BG,, has generators la, b ..... bj obeying the
relations

abi = bi a
I t

b2,./b~i = bibi.l a ,i 1 .... k

h h =bh. otherwise
t I / t

It happens that BG3 = Di4, but otherwise the Russian groups are not dihedral.

II



The Russian groups were introduced into the signal-processing literature by Berman and Grushko
[271. The major thrust of this article was to prove that the computational complexity of the associated
group transform is 0.75 N log, N + o(N), as ord(BG,) --- -. Thus. the effort to compute the BG,
transform is about 1/2 (resp. 3/4) that of the familiar FFT' (resp. W-HT). The proof is based on a careful
analysis of the unitary dual BG . this set contains just characters and either one or two irreducible

representations of dimension 24 according as ord(BG) = 2-k+/ or 22A+2. The commutator subgroup of
BG is the group C,, and its abelianization BGIC, (the largest commutative quotient group of BG) is
the dyadic group D,,_r

We note that the authors of [271 did not attempt to evaluate the role that their groups might play
in signal-processing applications beyond that of reduced complexity of the associated transform. Looking
ahead slightly, we will include such an evaluation below and eventually deduce that, in terms of standard
performance measures for the SP tasks that we consider (the Russian groups), performance is comparable
to that of the dyadic groups.

As a matter of specificity we record next the general form of the unitary matrix of the group
transform of BG n = _ .for a particular choice and ordering of the basis vectors in the spaces of
the various irreducible representations. Let

-~Iand HM, = H~,,DH, ,.for rn ! 3

These are the well-known Hadamard matrices. Then. the group transform matrix of BG is, up to a
normalizing constant,

H.2,k H,,2k

('H.,4 -(,H

cH ,A -cli.

('H,k -(-H,4

where c = 2 _

Let us use the phrase "superfast group" for any group whose associated group transform can be
computed "significantly faster" than the usual FF1'. Without attempting to be overly precise about the
meanino of this phrase, let us agree that the groups (BG)} are at least asymptotically superfast. Open
questions now abound: Are there other superfast groups? How can they be recognized or constructed?
And what is the limit of complexity reduction that is possible'? There are also the important ancillary
questions of such groups' value, if they exist, for particular SP tasks.
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We have already remarked on the rapid growth of the number Nh of distinct groups of order k when
k is a highly composite integer of the form k = 2" or k = 3 X 2" (cf. Subsection 1.2). Table 2 illustrates
this remark even more dramatically for the prime power orders k = 2".

TABLE 2

Groups of Order 2n

k Nk

16 14

32 51

64 267

128 2,328

256 56,092

512 >8,400,000

Since groups of order k 2" are those of order k for which maximum complexity reduction is to
be expected, we must concentrate on these. Obviously, the numbers in Table 2 preclude a case-by-case
analysis, so that special constructions, as were done for the Russian groups case, will be required. On
the other hand, the sheer size of the numbers Ni in Table 2 suggests a degree of a priori probability for
the existence of other classes of superfast groups. (We might term this argument one of "ample
opportunity," faintly analogous to that for the existence of extraterrestrial life based on the large number
of stars in our galaxy.) There is a field known as computational group theory whose techniques will
likely be of use in this matter.
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3. GENERIC SIGNAL-PROCESSING TASKS
AND THEIR PERFORMANCE MEASURES

We now want to begin consideration of how the various group transforms and optimal group filters

can-be compared. The most direct approach is to simply let them operate in controlled statistical
environments and monitor the results from various SP tasks. Specification of the latter is our present
concern. In order not to appeal to any possible bias on the reader's part. we will limit attention to generic
SP tasks, without regard to hardware implementation or specific technology application.

Proceeding from this intent, we next list several such SP tasks: others will, of course. occur to
knowledgeable readers:

Compression

Decorrelation

Filtering (estimation)

Detection

Discrimination

Pattern recognition

Resolution

Simulation.

Clearly some of these tasks, such as filtering and pattern recognition, are very general. and considerable
further specification is necessary to arrive at a well-defined problem to which our particular group-
theoretic techniques can be applied.

For present purposes, we have decided to restrict attention to the first three applications listed
above. Each of these is discussed in detail in the earlier report 11; relevant portions of that discussion
are reviewed next. The key point is that in each case a natural performance measure is given as a
function of the signal covariance. This fact permits us to neatly generate test signals, as we will see in
the next section.

The compression and decorrelation tasks can be treated from a common viewpoint, which is called
"transform coding" in the engineering literature. A block x of N samples is formed from a signal of
constant variance (perhaps, but not necessarily. stationary), and transformed by a unitary matrix U:
' = Ux. The covariance matrices of x and v are related by

11 =UY.U* (3.1)

In a complete SP system. the transformed samples [y) might now be individually quantized prior to

transmission over some channel and eventual reconstruction at the receiver. However. here we are
primarily interested in the statistical behavior of the original or "physical" coordinates [x) vis-a-vis that

of the transformed or "spectral" coordinates [v}.
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In general we may say that compression is determined by some measure of the size of the diagonal
of !,, and decorrelation by some measure of the off-diagonal entries. A more elegant approach would
in fact use the same measure for decorrelation as for compression, but this is a matter still under
investigation. So. we will stay with the more ad hoc approach for now.

For notational simplicity, let us set P = 1. and Q . We will assume that P is a correlation
matrix, so that P0. = var(x,)= 1,i= 1.... N. It then follows that

tr (Q) = tr (P) = N

In this study. we choose to measure compression either as a plot of the fraction of total variance
in the largest rn spectral coordinates vs m. I < m < N, or by the single number yQ which is the geometric
mean of diag (Q). This measure yQ is interesting for a couple of reasons. First, its logarithm

log yQ = Y_ log(qi)

is a simple example of a concave symmetric function of the {q)g. As such. it is part of a more general
theory of optimizing compression by minimizing concave (resp.. maximizing convex) symmetric func-
tions of the spectral variances. Second. its use is motivated by work in information and rate distortion
theory, in particular, the result that the average distortion from an optimal bit assignment in an indepen-
dent quantization of {V, subject to the constraint of a given average bit rate, is proportional to yQ [281.

As general facts about -y, we note that YQ < I as long a- P is a correlation matrix, and that min
YQ is achieved when the transformed matrix U is a discrete Karhunen-Love matrix for P. It can also
be shown that YQ can be arbitrarily near to 0 for some correlation matrix P.

To measure the amount of decorrelation achieved by the transform U, we will adopt the ad hoc
quantity

1001IIIQI (3.2a)

where

IIAIII= Xlaijl (3.2b)
i>j

This quantity normally ranges between 0 and 100. with 100 meaning that the spectral components have
become decorrelated, and 0 meaning no change in overall correlation structure. However, as we will
see. it can happen that IIIQII > IllPI for some ill-chosen transform U. In such a case, the above
performance measure will become negative, indicating that the transform operation has increased the
overall correlation between data coordinates.
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We turn now to a precise formulation of the filtering task. The simplest situation is classical mean
square (Wiener) filtering of a signal observed in uncorrelated white noise. That is, we are given
N-dimensional data

x = S - v

with E (s w') = 0. and noise covariance matrix 1 = Al (A > 0, / = N-dimensional identity matrix). The
problem is to form a linear estimate

. =L(.v)

to minimize the error

E (11 s-, 112 ) = e ( L ) = tr [( l - L ) ], (3.3)

The solution W = arg min e (-) is the standard (discrete) Wiener filter

W = YS (xS + A1 /- (3.4)

The computation s = Wi has no particularly efficient algorithm and, further, exact knowledge of
the second-order statistics of the data is required before W can even be written down. For these reasons
we proposed, and discussed at some length in Il , the replacement of W by fast suboptimal group filters.
These latter are special kinds of linear transformations of N-space. having a certain internal symmetry
defined by some group. Specifically, they are right convolution operators on L (G), ord(G) = N and.
as such. they are unitarily equivalent, via the group transform associated with G. to a multiplication
operator on L2 (G), where G is the unitary dual. The basic point is that there will be a fast algorithm
for their evaluation whenever there is one for the associated group transform.

If 4D(G) denotes the N-dimensional operator algebra of all group filters on G, then the optimal
group filter for our filtering problem is

T,. =arg min E[ Is -T(x) 112 ]  (3.5)

taken over all T E 4(G). Of course, this depends on the choice of the group G. Varying G subject to
ord(G) = N will yield optimal filters with a variety of mean-square errors and computational complexi-
ties. In particular, we have

e(T.)=t,'[(l-T )YX ] (3.6)

which can be compared with the benchmark formula for e(W).

Note that all these formulas implicitly involve the positive parameter A, which is related to a
natural signal-to-noise ratio (SNR) expression by

tl(Y ) I
SNR = ' = - 1(3.7)

A N A

if we assumed that 1- is a correlation matrix, so that ir(!) = N. In this study. we have considered SNR
values between ±10 dB.
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All the preceding formulas can. of course, be generalized to situations where the signal s has the
form s = Ah, where h is a random element of some Hilbert space H. A is a linear operator on H of finite
rank, and the noise m- is colored. The operator A represents the effect of some kind of measuring device,
or communications channel perhaps, on the unknown element h. The formation of optimal linear
estimates h = L(.v) in this context is the subject of linear inverse theory. but this added generality exceeds
our present need of a simple linear filtering task on which to test some new algorithms.

As noted previously in Subsection 1.2. all performance measures defined above have the virtue of
being explicit functions of the data covariance matrix 1" or the signal covariance matrix E . We will
put this feature to good use in the next section, by first defining several signal classes in terms of their
covariance structure, and then indicating how representatives of these various classes can be picked at
random, for purposes of a simulation to test the efficacy of our new algorithms.
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5. COMPUTATIONAL ASPECTS

As a first attempt to assess the relative merits of our various algorithms, we decided to simply let

them compete with one another in the two particular statistical environments just discussed. This is in

keeping with the general approach of using the computer as a kind of 'laboratory." either for the testing

of conjectures or for the generation of data. from which we might attempt to evolve explanatory theories.

A FORTRAN program was prepared to carry out the necessary calculations. First. a data dimen-

sion N is selected. In this work. N was always taken as 2". n < 6. Next. a signal model class is selected

from AR(p), nonparametric stationary. nonstationary. as discussed in the preceding section. Then. 50 N

X N random correlation matrices are generated from this signal class: these provide the test cases on
which our evaluations will be based. Next, one of the four groups of Section 2 is specified. and a

corresponding group transform matrix U is calculated. representing the group transform for a parlicular

choice of basis. The minimal information for this is the set of values of a complete set of irreducible

representations of the group taken on a set of generators.

At this point, we must decide on the type of signal-processing task on which to test our group

transform. If the task is to be compression or decorrelation. we simply transform each of our correlation

matrices according to Equation (3.1) and then compute the relevant performance measure. This is.

respectively, the geometric mean yQ of the diagonal of the transformed correlation matrix, or the per-
centage decrease in overall correlation, defined by Equation (3.2). On the other hand, it the task is to

be Wiener filtering, then a little more work is required. We first supply as an added input a signal-to-

noise figure. SNR, defined by Equation (3.7). Then. we must compute the Wiener filter error from

Equations (3.3) and (3.4), and the optimal group filter error from Equations (3.5) and (3.6). Carrying out

the minimization in Equation (3.5) is not an entirely trivial task. and is described in Section 3.5 of I11.

The result is ihat a system Ac = b of linear equations must be solved to yield coefficients 1.,

in the expression

r.- c, R(hi)

where h runs through all the group elements, and R(-) is the regular representation of the group. The

matrix A here has entries of the form

_-(,. + SN11-', R( h7/ h,/.

where P is the input correlation matrix, and from this form it follows that A is positive definite, so the

corresponding linear system is not troublesome numerically.

Finally. our computer program must display the results so obtained in a visually compelling

format. and with useful summary statistics. For the tasks of decorrelation and filtering, we have elected

to display the results in scatterplot form. for one pair of groups at a time, so that the two groups can

be directly compared with one another. Fixing the pair of groups. say (G,.G,). a two-dimensional point

21



(p,) is plotted for each sample correlation matrix. In the decorrelation case, p, is the performance
measure of Equation (3.2), while in the filtering case. p, is the percentage increase of the optimal
G,-filter error over the Wiener-filter error. So, in the decorrelation case. p, > p, means that G, gave a
better result than group G, (i.e.. achieved a higher degree of decorrelation). while in the filtering case.
p/ >p, means that group GI gave a worse result than group G, (since its optimal group filter had a larger
error than that of the other group).

For the task of data compression. we simply plot the average value of YQ fol each group. along
with two standard deviation error bars. Here. the smaller this average and the narrower the error bars,
the better the group has performed. Note that we have also included the corresponding result for the
discrete cosine transform (DCT). even though it is not a group filter. because of its popularity in
engineering applications.

A flowchart of the program operation is presented on the following page.
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6. RESULTS AND CONCLUSIONS

We \ ill no\, illustrate the operation of the program just described by presenting several examples

of output. Most of this output will be for the case of data dimension = 32. as being typical of the

dimensions ve considered (8 < N < 64). After output pertaining to each of the three signal tasks under

consideration. we wkill offer some conclusions, based on not only the displayed results but all results

relevant to that particular task.

Figures 2 and 3 shovx the ability of the various transforms to compress data vectors, with the

ceometric mean of the variances of the transformed vector as a xperformance criterion. We see that for

samples from stationary data. the DFT (cyclic group transform) and the DCT are about equally effective.

and close to the theoretical optimum of the DKLT. The other transforms are marginally less effective.

HoAever. for the nonstationary data samples. very little compression is evident by any of the transforms.

een though the DKLT achieves a significant degree of compression.
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The empirical evidence presented here, that stationary data are highly compressed (relative to the
optimum) by both the DFT and DCT. will not come as any surprise to readers familiar with the transform
coding literature. Recall. for example, the work of Unser 1171. wherein it is shown that the DFT and
DCT (among others) are asymptotically equivalent to the DKLT. for data derived from (weakly) station-
ary processes.

Perhaps the result for nonstationary data will not be surprising either, given the total lack of
structure in the correlation matrices. In the case of RCMs with random spectra. it can be proved that,
asymptotically, the average geometric mean associated with the DKLT is e-112 _ 0.61 .... while that
value associated with any of the transforms seems to tend to 1. Empirically. the discrete W-HT does
best. but not well enough to be of any practical interest. The situation for Gram RCMs is. in a sense.
even more striking, as the geometric mean figure associated with the DKLT seems to be asymptotic to
a value = 0.36 ....

These results tend to suggest that. given a correlation matrix P. the functional YQ. defined on the
unitary group by

yQ(U) = GM[diag(UPU *)]
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which has a maximum value of I at U = 1. has a steep and sharp minimum at U = DKLT (= matrix
of normalized eigenvectors of P: the fact that the minimum occurs at L! is not at question. but rather
the behavior of -y near this minimum). From this perspective, it appears that other methods of approxi-
mating the DKL'V. for general non-Toeplitz correlation matrices, along the lines already mentioned in
Section 1.3 are needed.

Although similiar conclusions might be expected when we turn to the second task. decorrelation.
there is no\ an interesting twist. Recall that we are using the ad hoc measure of decorrelation defined
by Equation (3.2). This is just the average magnitude of the off-diagonal entries of the covariance matrix
Q = UPU*. The larger this value, the more decorrelation has taken place under the action of the
transform U. Figure 4 shows a typical result for stationary data: both the W-HT and the DFT achieve
a significant level of decorrelation. with the latter slightly better on average (64 vs 58 percent). For such
data the DCT and DFT are essentially comparable, with a slight advantage to the former (73 vs 64 per-
cent): the W-HT more decisively outperforms the Russian groups transform (58 vs 40 percent).
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Figure 4. Decorrelation data (percent)- stationary.

Now let us consider nonstationary data. We first report that the DCT. W-HT. and Russian groups
transform all perform essentially identically. However. the DFT actually produces, on average, a nega-
tive degree of decorrelation. indicating an increase in overall correlation. This is shown in Figures 5
through 7 for the cases of data dimension = 16. 32. and 64. respectively.
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From such results we conclude that, as with the case of data compression, the DFT/DCT should
be used with stationary data. However, for nonstationary data the DFT should definitely not be used.
The other transforms all achieve at least a slight decorrelation although, as before, not enough to be of
practical interest. It appears that the DFT, so well adapted to stationary data, is a singularly bad
transform otherwise. We even ran some experiments with random unitary matrices vs the DFT and, on
average, the DFT underperformed the random matrices in decorrelating nonstationary data.

However, there is a fringe benefit here. The empirical observation that the DFT is so good (resp.,
poor) a decorrelator of stationary (resp., nonstationary) data suggests its usage as a test for stationarity.
That is, given a stretch of data we compute its DFT and then the measure of decorrelation relative to
the original data. A significant level of this figure. say >20 percent. would be taken to imply station-
arity - otherwise, nonstationarity. Our simulation suggests such a test would be 100-percent accurate
for data dimension > 8, but a more vigorous justification should still be given. The problem lies in
passing from the data stretch, or its transform. to a covariance matrix. The associated sampling errors
will act to reduce the test accuracy.

Finally, we turn to the matter of Wiener filtering. Hence, we display results only in dimension 32
and for SNR = +5 dB. Recalling from the preceding section that larger values of the filtering perfor-
mance measure are worse than smaller values, we see from Figure 8 that, once again, the cyclic group
is better for stationary data than the dyadic group, which in turn is slightly better than the Russian
groups. The average increase in mean-square error for these optimal group filters over the Wiener-filter
error is 3.5. 7.0. and 8.3 percent, respectively.
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For nonstationary data, we observe from Figures 9 and 10 a definite, although small, advantage
to the dyadic group optimal transform, and a virtual equivalence of performance between this transform
and the Russian groups transform.
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Based on these and related figures for other dimensions and SNRs. we can draw the following
conclusion. For filtering stationary data, the use of ordinary digital filters (with computation perhaps
accelerated by means of the associated FFT) is recommended. For nonstationary data, the use of the
group filters based on the Russian groups is recommended because of the slightly lower error rate and
the decrease in complexity of the associated group transform.

At this time. two other remarks are appropriate. The first concerns the dependence of the foregoing
conclusions on the SNR level. As SNR increases, all the group filtering errors tend to collapse back to
the optimal, which in turn is decreasing to zero las it must. according to Equations (3.4) and (3.7)1. As
SNR decreases, the Wiener filter W tends to 0 from Equation (3.4) (more generally, the resolvent

operator vanishes at oc), and the mean-square filtering error tends to N = tr( ,), according to Equa-
tion 3.3). In this situation. while the absolute error increases to N. as just noted. the relative group-filter
error appears to decrease to 0. It should be checked here whether the mathematics of optimal group
filtering necessarily forces the optimal group filter to the zero-operator. We have also noticed a slightly
larger degree of scatter in the scatter plots as SNR decreases. so as to favor the use of the dyadic/Russian
groups filters.

The second remark pertains to the dependence of our conclusions on the data dimension N. The
basic observation here is that. with increasing N. all the point clouds in the various scatter plots tend to
decrease in size. both visually and as measured by the magnitude of the determinant of the 2 X 2 sample
covariance matrix of the point cloud (sometimes called the generalized sample variance). This indicates
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that the effect of the various transforms/filters is becoming constant across the various signal classes. In
the filtering studies we also noted that the contracting point cloud tended to c)uster along the 45' line
as N increased, suggesting an asymptotic equality of performance. Insofar as this is truly valid, it
suggests that the main criterion for choice of group. at least for filtering applications, is the complexit.
of its group transform. This observation thereby tends to validate the emphasis given in the recent
mathematical literature to transform complexity rather than error analysis. In particular. for the small
collection of groups considered in this work. it suggests the use of the Russian groups filters for Wiener
filtering of large dimensional nonstationary data.

The alert reader may have noted the absence of any mention of results pertaining to the dihedral
groups. even though this was one of the four classes of groups originally discussed in Section 2. Because
it became apparent rather early, in our work that the error rates for these groups agreed very closely with
those of the cyclic groups. there was really not much point in our suggesting their use in place of the
so much more familiar cyclic group transforms (DFT) and digital filters.
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7. SUMMARY

The progress of this research project to date can perhaps be summarized best along the lines of

* Where we were

* Where we are

* Where we may be.

Prior to the inception of this work. a highly developed theory existed of (weakly) stationary time

series, indexed by either the group of integers or the group of all real numbers. with most of the basic

constructs carrying over the case where the index set is a general locally compact abelian group. Here.

"basic constructs" include Fourier transform, power spectrum. autocorrelation function. convolution

operators (linear invariant filters), etc. For applications, there was the discrete Fourier transform (DFT)
on the cyclic group of arbitrary order. and various fast algorithms (FFT) for its computation. along with

some asymptotic results describing its effect of long segments on a stationary series. Given this theory

and the efficient computational procedures, there would have seemed to be no particular reason to expect

to discover any significantly better methods with other groups and, indeed, our simulations have sup-

ported this belief. As classical transforms well suited to the treatment of stationary data. we are

including the discrete cosine transform (DCT) here along with the DFT.

Based on the work and computer experiments reported here, we can announce a small step beyond
the state of knowledge just described. Namely, when dealing with general nonstationary data. other

group transforms and filters exhibit both better error rates and lower complexity. These are based on

both abelian (e.g., dyadic) and nonabelian (e.g., Russian) groups. Three further remarks are pertinent

here. First, while the decrease in error rates is not high, we should bear in mind that the results are based

on truly random and unstructured data, so there possibly might be a more significant improvement for

data derived from a particular nonstationary model. Second, the alternate transforms are just as easy to
use as the DFT. Third, there is a general methodology, based in part on the use of random correlation

matrices, to permit comparison of arbitrary transforms and filters. The development of both the theory

and the computer generation of these matrices has been an important by-product of this project.

Finally. several open questions of general nature remain which we want to record once more.

First, there is a case to be made that of the two familiar abelian group transforms studied here, namely

the DFT and W-HT, the latter is somehow the one of choice - if a choice must be made. It has by

far the simpler arithmetic, exhibits almost comparable performance on stationary data. and better per-

formance across the broader range of nonstationary data. Is there a theoretical basis for this situation?

Second, there is the circle of questions raised near the end of Section 2 concerning the existence of other
"superfast" (and presumably nonabelian) groups of order 2". besides the Russian groups. and their

relevance for signal-processing applications. What are the limits of such group-based performance and

complexity? And, as a final speculation, we can wonder whether the theory of group transforms and

filters is in any reasonable sense sufficient for the needs of signal processing. That is, we have made

much of the fact that it offers a unified approach to fast transforms and filters, and we conclude by

wondering: Are these the only such transforms and filters that need be considered?
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ADDENDUM

During the preparation of this report. two other articles appeared that bear on the "'Russian groups"
defined in Section 2. These articles, by Clausen [291 and Rockmore 1301. both exhibit a large class of
nonabelian groups G for which the group transform F(; and its inverse can both be computed in
O(fGI log fGI) operations, where IGI := ord(G). The groups to which this result applies are the so-called
metabelian groups. Recall that G is metabelian if and only if G has normal abelian subgroup H for which
the quotient group G11l is also abelian. Equivalently, the commutator subgroup of G is abelian.

The result of Clausen that is particularly relevant here is that any metabelian 2-group has a group
(Fourier) transform F such that both F and its inverse can be computed in at most 1.5 IGI log IGI
operations. The term "'operations" means, in the present context. additions/subtractions and (scalar)
i.,ultiplications. We use the more neutral symbol F rather than F(. to emphasize the non-uniqueness of
the group transform for nonabelian groups, due to the presence of at least one irreducible representation
of degree > 2. Now. by the remarks made about the Russian groups sequence [BG,,) in Section 2. they
are meiabelian 2-groups so this general theory applies. However, for those groups the constant 1.5 can
be halved, as n -- x: that was the whole point of 1271. So we now have a refinement of our earlier
question about superfast groups: namely, it would seem sensible to restrict our attention to the subclass
of metabelian groups. and to attempt a complete understanding of its potentialities before considering
any further generality.
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